

A Best Practice Guide for Welding of Newly Developed Duplex Stainless Steel (UNS S82551) Seamless Pipes

25 February 2020

Kenta Yamada, University of Leicester

Dr. Kasra Sotoudeh, TWI Ltd

Professor Hongbiao Dong, University of Leicester

1. Introduction

2. Material design concept

- Concept of Material Design for New Alloy Grade
- Category of newly developed UNS S82551

3. Performance of newly developed UNS S82551

- Base metal properties and weldability
- 4. Conclusion
- 5. Future plan

1. Introduction

- 2. Material design concept
 - Concept of Material Design for New Alloy Grade
 - Category of newly developed UNS S82551
- **3. Performance of newly developed UNS S82551** - Base metal properties and weldability
- 4. Conclusion
- 5. Future plan

1.Introduction-Background

Martensitic and duplex stainless steels have been exploited by a wide range of industrial sectors for many years because of their availability, workability, strength, toughness and corrosion resistance.

In slightly H_2S -containing environments, super martensitic stainless steel (13Cr SMSS) pipes have been used in the oil and gas industries for many years.

In early 2000's, girth welded joints in 13Cr SMSS were reported to be susceptible to SCC at HAZ in sweet conditions. **Post weld heat treatment** (PWHT) is effective at preventing SCC.

However, PWHT could have a negative impact on the efficiency of pipe laying operations in some cases.

1.Introduction-Background

Duplex stainless steels: 22Cr duplex(e.g. UNS S31803) 25Cr super duplex(e.g. UNS S39274)

- Applicable in as-welded condition (No PWHT)
- Widely used for flow line applications

However, these higher grade DSSs incur greatly increased cost

A new DSS containing 25Cr-5Ni-1Mo-2.5Cu has been developed (UNS S82551)*, which can be used in the as-welded condition in slightly sour conditions and has a lower cost than the existing DSS grades.

*D. Motoya, et.al ; Eurocorr 2012

1. Introduction

2. Material design concept

- Concept of Material Design for New Alloy Grade
- Category of newly developed UNS S82551
- **3. Performance of newly developed UNS S82551** Base metal properties and weldability
- 4. Conclusion
- 5. Future plan

2. Material design concept

Concept of Material Design for New Alloy Grade

2. Material design concept

<Chemical composition of UNS S82551>
25Cr-5Ni-1Mo-1Mn-2.5Cu-0.2N (mass%)

New material can be categorized as "Modified" grade from conventional duplex

<Development target>

- Superior corrosion resistance without PWHT (>13CrSMSS)
- Lower price index than existing DSS ((>22CrDSS, 25CrSDSS))

1. Introduction

2. Material design concept

- Concept of Material Design for New Alloy Grade
- Category of newly developed UNS S82551

3. Performance of newly developed UNS S82551

- Base metal properties and weldability

4. Conclusion

5. Future plan

Base metal properties

• Chemical compositions of production pipe for UNS S82551

С	Mn	Cu	<u>Ni</u>	<u>Cr</u>	<u>Mo</u>	N	PREW
< 0.02	1.09	2.45	<u>4.96</u>	<u>24.95</u>	<u>1.09</u>	0.19	31.6

- Pipe making process
 - : Rotary single piercing mandrel mill process
- Heat treatment

Pipe making

: Solution heat treatment

Base metal properties

• Chemical compositions of production pipe for UNS S82551

С	Mn	Cu	<u>Ni</u>	<u>Cr</u>	<u>Mo</u>	N	PREW
< 0.02	1.09	2.45	<u>4.96</u>	<u>24.95</u>	<u>1.09</u>	0.19	31.6

Microstructure

[Phase balance] Ferrite : Austenite approx. 50 : 50 (%)

[Sigma phase] No Sigma phase precipitation

Base metal properties

[Tensile properties]

[Toughness properties]

Welding record for UNS	S82551(OD273.1 x WT14.3	(mm)) by Nippon steel
------------------------	-------------------------	-----------------------

Process	<u>GMAW</u>			Position: <asme 1g=""></asme>				
	Pass	Filler Metal	Process	Current (Amps)	Volts	Speed (cm/min)	Heat Input (kJ/mm)	
	Root 1	25Cr SDSS	GMAW	148	20.6	42.8	0.43	
	Fill 2-4	25Cr SDSS	PGMAW	172-185	20.4-21.2	37.4-38.5	0.57-0.59	
	Cap 5	25Cr SDSS	PGMAW	119	19.9	26.0	0.55	
Joint design	14.3 1.0 1.5 (mm)			Macro Photo		i Contraction of the second se		
Preheat	None			Interpass te	ss temp. 150°C max.			
Shielding gas	69%Ar+30%He+1%CO ₂ (30 L/min)			Back shield	Back shield gas Ar 100% (5 L/min)			
PWHT	Not applied	Not applied						

Welding record for UNS S82551(OD273.1 x WT25.4 (mm)) by Nippon steel							
Process	<u>GTAW</u>	Position: <asme 1g=""></asme>					
	Pass	Filler Metal	Process	Current (Amps)	Volts	Speed (cm/min)	Heat Input (kJ/mm)
	Root 1	25Cr SDSS	GTAW	100	12	10	0.72
	Fill 2-30	25Cr SDSS	GTAW	130-170	12-14	10	0.94-1.43
	Cap 31-34	25Cr SDSS	GTAW	170	14	10	1.43
Joint design	25.4 1.2			Macro Photo			
Preheat	None			Interpass temp. 150°C max.			
Shielding gas	Ar 100% (20 L/min)			Back shield gas Ar 100% (5 L/min)			min)
PWHT	Not applied						

Microstructure

Photo. GMAW welded joint of UNS S82551 (OD273.1mm x WT14.3mm)

	Fill		Ferrite Count		
Pipe size	Process	Consumable	Position	ASTM E562	DNV OS F101 requirement
OD273.1xWT14.3	GMAW		Weld metal	<u>45%</u>	
			HAZ	<u>62%</u>	WM/HAZ:
			Weld metal	<u>46%</u>	<u>35~65%</u>
00275.1800125.4	GIAW		HAZ	<u>58%</u>	

Engineering and Physical Sciences **Research Council**

SCC and SSC resistance

Test Method	: 4 point bent beam test
Specimen Size	: 115 ^L x 15 ^W x 3 ^t (mm)
Position of Weld meta	I : Center of specimen
Inner surface	: As intact
The other surface	: 600# paper finish
Applied stress	: 100% AYS
Number of specimens	: Two

Photo: Specimen of corrosion test

Condition	Mark	Solution	рН	H ₂ S(MPa)	CO ₂ (MPa)	Temp. (deg.C)
SCC	X1	25wt%NaCl				130
	Y1	(Cl ⁻ :180,000mg/L)	4.5	0.004	0.000	
SSC Y2		1.6wt%NaCl (Cl ⁻ :10,000mg/L)		0.004 0	0.096	90
	Y3	0.17wt%NaCl (Cl ⁻ :1,000mg/L)	3.5			

SCC resistance

<u>SSC resistance</u>

Material.	Solution	рН	H ₂ S (MPa)	Temp.	Results	
	0.17%NaCl (Cl ⁻ :1,000mg/L)	3.5		90 deg.C		
UNS S82551	1.6%NaCl (Cl ⁻ :10,000mg/L)	4.0	0.004		No SSC	
	25%NaCl (Cl ⁻ :180,000mg/L)	4.5				

UNS S82551 can be used in slightly sour conditions(≤0.004MPa) and has a lower cost than the existing DSS grades.

1. Introduction

- 2. Material design concept
 - Concept of Material Design for New Alloy Grade
 - Category of newly developed UNS S82551
- **3. Performance of newly developed UNS S82551** Base metal properties and weldability

4. Conclusion

5. Future plan

4. Conclusion

- 5
- A new duplex stainless steel containing 25mass%Cr- 5mass%Ni- 1mass%Mo-2.5mass%Cu has been developed (UNS S82551), which is intended for flowline application in slightly sour environments.
- The characteristic property of this material is SSC resistance in slightly sour conditions despite a lower molybdenum content than that of the existing duplex stainless steels, and it can be used in the as-welded conditions because it is duplex stainless steels rather than super-martensitic stainless steel.
- The as-welded joints of this material provide sufficient mechanical properties as well as corrosion resistance in slightly sour conditions, therefore this material is considered to be the most cost effective material depending on the corrosion resistance required.

1. Introduction

- 2. Material design concept
 - Concept of Material Design for New Alloy Grade
 - Category of newly developed UNS S82551
- **3. Performance of newly developed UNS S82551** - Base metal properties and weldability
- 4. Conclusion
- 5. Future plan

Nippon Steel and The Welding Institute(TWI) are collaborating on a development programme to establish best practice guide for welding of this new alloy grades.

[This presentation]

Part 1: To evaluate the feature of developed DSS (Nippon steel in-house testing)

- Alloy design
- Performance of material (Mechanical and corrosion properties)

[Future plan]

Part 2: To investigate the effect of welding condition on intermetallic precipitation, microstructure, mechanical and corrosion properties (conducted at TWI)

- The maximum heat input and interpass temperature limits for welding
- Modelling approach (Metallurgical model with welding heat transfer)

Thank you for your attention.

